
衡水金卷先享题分科综合卷语文全国一卷
衡水金卷先享题分科综合卷语文全国一卷已经更新完毕,目前我们已经整理了衡水金卷先享题分科综合卷语文全国一卷的各科答案和试卷,下面将围绕衡水金卷分科卷进行更多介绍。 17.(1)x,x2∈(0, ∞)且x10,f(x)单调递减,当x,x2,o,x-2>0f(x)-fx)<0,f(x)单调递增综上所述,函数f(x)=x 2在(0,2)上单调递减,在2, ∞)上单调递增x(2)由(1)知f(x)在2, ∞)上单调递增,∴f(x)在[3, ∞)上单调递增∴f(x)min=f(3)=∴f(x)在[3, ∞)上的值域为[, ∞)0
正文 2021届衡水金卷先享题分科卷 新高考 地理(一)1答案2 已经更新完毕,目前我们已经整理了正文 2021届衡水金卷先享题分科卷 新高考 地理(一)1答案2 的各科答案和试卷,下面将围绕衡水金卷分科卷进行更多介绍。
衡水金卷先享题分科综合卷全国卷
衡水金卷先享题分科综合卷全国卷已经更新完毕,目前我们已经整理了衡水金卷先享题分科综合卷全国卷的各科答案和试卷,下面将围绕衡水金卷分科卷进行更多介绍。 B
)共他力少力20.解:(1)由题意,椭圆E的焦距2c=2,即c=11分当直线l经过椭圆E的右顶点时,直线的方程为y=x-…2分不妨设此时A为右顶点,则a=,得yB=4,结合图象可知,yB=4…3分∴xB=将点B的坐标代入椭圆E的方程可得,a2=b2…4分又∵a2=b2,∴a2=4,b2=3,∴椭圆E的方程为 =1……5分(2)设A(x1,y1),B(x2,y2),把y=x m代入椭圆方程化简,得x2 mx m2-3=0,∴△=m2-4(m2-3)=-3m2 12>0→m2<4,6分∴x1 x2=-m,x1x2=m2-3,∴AB|=1 4x1-x2=2m2-4(m2-3),…7分点O到直线l的距离d=m=2m…8分1 154△OAB的面积S=|AB|d=√-3m 12m29分当m2=2,即m=±2时,△OAB的面积最大,10分此时直线l的方程为y=x±212分评分细则:(1)第一问共5分,求出c=1得1分,当直线l经过椭圆的右顶点时,求出直线l的方程得1分,求出B点的坐标得1分,将点B的坐标代入椭圆方程得出关系式得1分,正确写出椭圆方程得1分(2)第二问共7分,根据△>0,求出m24得1分,未说明扣1分(3)其他方法按步骤酌情给分
衡水金卷先享题分科综合卷地理2021
衡水金卷先享题分科综合卷地理2021已经更新完毕,目前我们已经整理了衡水金卷先享题分科综合卷地理2021的各科答案和试卷,下面将围绕衡水金卷分科卷进行更多介绍。 21.解:(1)当a=-8时,(x)的定义域为(-1, ∞)f(x)=(2x 4)ln(x -4x-8=(2x 4)[ln(x 1)-2],2分令f(x)=0,解得x=e2-1.…3分当-1e2-1时,f(x)>0,则f(x)在(e2-1, ∞)上单调递增5分(2)当x≥0时,f(x)=(2x 4)ln(x 1)-4x a6分设函数g(x)=f(x)=(2x 4)ln(x 1)-4x a,则g(x)=2n(x 1)-2x 1设函数h(x)=2n(x 1)-x 1x∈0, ∞),则h(x)=2x 2x(x 1)2=0又h(x)≥h(0)=0,从而g(x)≥0,所以f(x)[0, ∞)上单调递增回当a≥0时,f(x)≥(0)=a≥0,则f(x)在[0, ∞)上单调递增,又f(0)=0,符合题意微信扫码找试卷当a<0时,设f(x)在(0, ∞)上的唯一零点为x当x∈[0,xo)时,f(x)<0;当x∈(xo, ∞)时,f(x)>0故f(x)在(0,xo)上单调递减,在(xo, ∞)上单调递增,所以f(x不符合题意…11分综上,a的取值范围为[0, ∞).………12分评分细则:(1)第一问中,求导后因式分解正确,但未考虑定义域写成(x)在(-∞,-2)和(e2-1, ∞)上单调递增,在(-2,e2-1)上单调递减扣3分(2)第二问中,根据f(0)≥0求得a0但未证明当a≥0时,对任意x≥0,f(x)≥0恒成立,得2分,根据f(0)≥0求得a≥0,并严格证明当a≥0时,任意x≥0,f(x)≥0恒成立,得满分(3)其他方法按步骤酌情给分