
衡水金卷2021年普通高等学校招生全国统一考试模拟试题英语(二),目前我们已经整理了衡水金卷2021年普通高等学校招生全国统一考试模拟试题英语(二)的各科答案和试卷,更多衡水金卷信息卷请关注本网站。
21.(1)直线(e2-1)x ey e2-2=0的斜截式方程为y函数/)012一C与函数f(x)=ae-e(x 1)的图像切于点(x,y0)设直线yx 1),∴f(x)则有{y0(x0 1)把ae=e e2,代入式子解得得1..f(x)=e-e(x 1),f当x∈(-∞,1)时,f单调递减当x∈(-∞,1)时,f'(x)<0,f(x)单调递减;当x∈(1, ∞)时,f(x)>0,f(x)单调递增;所以函数f(x)的递减区间为(一∞,1),递增区间为(1, ∞),2)当x∈(1, ∞)时,lnx>0,要证lnxe*<0,只需证elnx-(x2-1)>0成立;令g(x)=elmx-(x2-1),则g(x)=e 1nx 2厘当x∈(1, ∞)时,g(x)=(mx 1设a(x)=1x 1,则a(x)=1-1=x=10∴a(x)=nx 单调递增,∴a(x)=1nx ->a(1)=1,:g(x)=(Inx -)e-2x >e-2x令v(x)=e-2x,则v(x)=e-2,∴v'(x)单调递增,x∈(1, ∞)时,v(x)>v(1)2>0,…∴v(x)单调递增,且v(1)=e-2>0,∴x∈(1, ∞)时,g'(x)>0,∴g(x)单调增,∴x∈(1, ∞)时,g(x)>g(1)=0,∴x∈(1, ∞)时,elnx-(x2-1)>0成立,更多内容,请微信搜索关注。